Robust fault-tolerant tracking control design for spacecraft under control input saturation.
نویسندگان
چکیده
In this paper, a continuous globally stable tracking control algorithm is proposed for a spacecraft in the presence of unknown actuator failure, control input saturation, uncertainty in inertial matrix and external disturbances. The design method is based on variable structure control and has the following properties: (1) fast and accurate response in the presence of bounded disturbances; (2) robust to the partial loss of actuator effectiveness; (3) explicit consideration of control input saturation; and (4) robust to uncertainty in inertial matrix. In contrast to traditional fault-tolerant control methods, the proposed controller does not require knowledge of the actuator faults and is implemented without explicit fault detection and isolation processes. In the proposed controller a single parameter is adjusted dynamically in such a way that it is possible to prove that both attitude and angular velocity errors will tend to zero asymptotically. The stability proof is based on a Lyapunov analysis and the properties of the singularity free quaternion representation of spacecraft dynamics. Results of numerical simulations state that the proposed controller is successful in achieving high attitude performance in the presence of external disturbances, actuator failures, and control input saturation.
منابع مشابه
Spacecraft Fault Tolerant Attitude Control Design under Control Input Saturation and Uncertainty in Fault Information
In this paper, a continuous stable tracking control algorithm is proposed for spacecraft in the presence of unknown actuator failure, control input saturation and external disturbances. The design method is based on variable structure control and has the following properties: 1) fast and accurate response in the presence of bounded disturbances; 2) robust to the partial loss of actuator effecti...
متن کاملDesign of Nonlinear Robust Controller and Observer for Control of a Flexible Spacecraft
Two robust nonlinear controllers along with a nonlinear observer have been developed in this study to control a 1D nonlinear flexible spacecraft. The first controller is based on dynamic inversion, while the second one is composed of dynamic inversion and µ-synthesis controllers. The extension of dynamic inversion approach to flexible spacecraft is impeded by the non-minimum phase characteristi...
متن کاملFault-Tolerant Attitude Control for Flexible Spacecraft with Input Saturation
Fault-tolerant constrained attitude controllers are proposed for flexible spacecraft in the presence of input saturation and actuator fault, as well as model uncertainty and external disturbance. Two input saturations, that is amplitude saturation and, amplitude and rate saturation are considered and simple and effective compensators are designed to deal with the effect of input saturation. Two...
متن کاملFault-Tolerant Control of a Nonlinear Process with Input Constraints
A Fault-Tolerant Control (FTC) methodology has been presented for nonlinear processes being imposed by control input constraints. The proposed methodology uses a combination of Feedback Linearization and Model Predictive Control (FLMPC) schemes. The resulting constraints in the transformed process will be dependent on the actual evolving states, making their incorporation in the de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISA transactions
دوره 53 4 شماره
صفحات -
تاریخ انتشار 2014